About

WebGL does not seem to be available.

This can be caused by an outdated browser, graphics card driver issue, or bad weather. Sometimes, just restarting the browser helps. Also, make sure hardware acceleration is enabled in your browser.

For a list of supported browsers, refer to http://caniuse.com/#feat=webgl.

Hello this is my caption.
This is a test of the shortcode!

This site is a testbed for implementing and adapting various features using the Hugo Relearn theme. It draws on content from my 2019 PhD thesis, serving as a platform to experiment with new shortcuts, including:
  • Custom Hugo Shortcodes: Creating efficient shortcuts for dynamic content presentation.
  • MOLSTAR Integration: Embedding interactive 3D molecular structures for enhanced visualization.
  • Theme Adaptation: Customizing the Relearn theme to better suit specific use cases.

Subsections of About

1. Summary/Zusammenfassung

Subsections of 1. Summary/Zusammenfassung

Chapter 1

Summary 🇬🇧

Ribosomal protein biosynthesis (translation) is a crucial process in all domains of life. This work aims to investigate the process of translation in the mammalian system by means of single particle cryogenic electron microscopy (cryo-EM). The focus of this thesis lies on the following two aspects of mammalian translation:

1) Translocation by the mammalian cytosolic 80S ribosome. Translocation moves the tRNA2•mRNA module directionally through the ribosome during the elongation phase of translation and is associated with large scale conformational changes within both the ribosome and the bound tRNAs. It is catalyzed by the GTPase eEF2 (EF-G in bacteria). Although knowledge on translocation, especially in the bacterial system, has accumulated in the past years, the detailed mechanisms are not fully understood. In particular, the role of GTP hydrolysis is controversial and structural knowledge on translocation in the mammalian system has been missing.

In this work, three high-resolution structures of in vitro reconstituted authentic intermediates of translocation by the mammalian 80S ribosome are presented. They are trapped by the non-hydrolysable GTP analog GMPPNP and contain, in contrast to similar experiments in the bacterial system, the translocase eEF2 and a complete tRNA•mRNA module. Single-molecule imaging, carried out in collaboration with Prof. Scott Blanchard and colleagues, revealed that GTP hydrolysis principally facilitates rate-limiting, late steps of translocation, consistent with the presented cryo-EM structures. Comparison with the bacterial system showed that distinctions between bacterial and mammalian translocation mechanisms originate from differential dissociation rates of deacylated tRNA from the E site.

Further, a cryo-EM structure of a mammalian 80S ribosome containing a complete tRNA2•mRNA module and eEF2•GDP is presented, which stems from a sample prepared by in vitro translocating a PRE complex using eEF2•GTP. In contrast to the GMPPNP-stalled translocation intermediates, this structure gives insight into the interaction of unstalled eEF2 with the 80S ribosome.

2) The influence of serum on the energy landscape of mammalian translation and on the structure of ribosomal protein eS6. Serum treatment of cells intervenes with many signaling pathways, but it is not known if the energy landscape of translation is altered upon its influence. Serum deprivation and restimulation can be used as a model system to diminish and enhance phosphorylation of ribosomal protein eS6, which is a eukaryote-specific protein on the small ribosomal subunit. The phosphorylation of the C-terminus of eS6 has been investigated since a long time, however, its mechanistic role has not been elucidated yet. In particular, hardly anything is known on possible structural impacts of eS6 phosphorylation.

The presented work reveals that serum deprivation and restimulation do not have an impact on the energy landscape of translation for the ex vivo derived cytosolic fraction of polysomes. However, the observation of different yields of cell lysate from serum deprived and restimulated cells led to the proposition of a new hypothesis that suggests cellular redistribution of ribosomes. The phosphorylation of ribosomal protein eS6, which strongly correlates with serum treatment, does not lead to observable structural changes in the small ribosomal subunit.

Finally, the structural analysis and in silico sorting of the obtained translation intermediates led to the identification of two previously not observed substates of the 80S rotated PRE ribosome and to the unprecedented visualization of two distinct, native inititation complexes.

Chapter 2

Zusammenfassung 🇩🇪

Die ribosomale Proteinbiosynthese (Translation) ist ein zentraler Prozess in allen Lebensdomänen. In der vorliegenden Arbeit wird der Mechanismus der mammalischen Translation mithilfe der kryogenen Elektronenmikroskopie (cryo-EM) untersucht. Der Fokus liegt hierbei auf den folgenden zwei Aspekten der mammalischen Translation:

1. Die Translokation durch das mammalische, zytosolische 80S Ribosom. Die Translokation ist die gerichtete Bewegung des tRNA2•mRNA Moduls durch das Ribosom während der Elongationsphase der Proteinbiosynthese und ist mit umfangreichen Konformationsänderungen des Ribosoms und der gebundenen tRNAs assoziiert. Sie wird durch die GTPase eEF2 (EF-G in Bakterien) katalysiert. Obwohl während der vergangenen Jahre viel über die Translokation, vor allem im bakteriellen System, zusammengetragen wurde, bleibt der genaue Mechanismus unverstanden. Insbesondere die Rolle der GTP-Hydrolyse ist kontrovers und es fehlen strukturelle Daten über die Translokation im mammalischen System.

In dieser Arbeit werden drei hochaufgelöste Strukturen in vitro rekonstituierter, authentischer Translokationsintermediate des mammalischen 80S Ribosoms präsentiert. Sie konnten mithilfe des nicht-hydrolysierbaren GTP-Analogons GMPPNP eingefangen werden und enthalten im Gegensatz zu ähnlichen Experimenten im bakteriellen System die Translokase eEF2 und ein komplettes tRNA2•mRNA Modul. Die in Kollaboration mit Herrn Prof. Scott Blanchard und seinen Kollegen durchgeführte Einzelmolekül-Bildgebung ergab, dass die GTP-Hydrolyse hauptsächlich späte, geschwindigkeitslimitierende Schritte der Translokation fördert, eine Beobachtung, die in Einklang mit den präsentierten cryo-EM Strukturen steht. Der Vergleich mit dem bakteriellen System schließlich zeigt, dass Unterschiede zwischen bakteriellen und mammalischen Translokationsmechanismen in verschiedenen Dissoziationsraten der deacylierten tRNA von der E Stelle begründet sind.

Desweiteren wird die cryo-EM Struktur eines mammalischen 80S Ribosoms mit einem kompletten tRNA2•mRNA Modul und eEF2•GDP präsentiert, welche aus einer Probe stammt, für deren Herstellung ribosomale Prä-Komplexe in vitro mit eEF2•GTP transloziert wurden. Anders als die mit eEF2•GMPPNP eingefangenen Translokationsintermediate gewährt diese Struktur Einblick in die Interaktion von unmanipuliertem eEF2 mit dem 80S Ribosom.

2) Der Einfluss von Serum auf die Energielanschaft der mammalischen Translation und auf die Struktur des ribosomalen Proteins eS6. Die Behandlung von Zellen mit Serum greift in viele Signalwege ein, doch es ist nicht bekannt, ob auch die Energielandschaft der Translation beeinflusst wird. Serum-Deprivation und -Stimulation kann als Modellsystem für die Verringerung und Steigerung der Phosphorylierung des ribosomalen Proteins eS6, einem Eukaryoten-spezifischen Protein der kleinen ribosomalen Untereinheit, angewendet werden. Die Phosphorylierung des C-Terminus von eS6 wird seit langer Zeit erforscht, jedoch ist ihre mechanistische Bedeutung bisher unbekannt. Vor allem weiß man kaum etwas über mögliche strukturelle Auswirkungen der eS6-Phosphorylierung.

Die vorliegende Arbeit zeigt, dass Serum-Deprivation und -Stimulation keinen Einfluss auf die Energielandschaft der Translation in der zytosolischen Fraktion der ex vivo gewonnenen Polysomen hat. Die Beobachtung eines Unterschieds in den Zelllysatausbeuten zwischen Serum-deprivierten und -stimulierten Zellen fßhrte jedoch zu einer neuen Hypothese, welche die zelluläre Umverteilung von Ribosomen nahelegt. Die Phosphorylierung des ribosomalen Proteins eS6, welche stark mit der Serumbehandlung korreliert, fßhrte zu keinen sichtbaren strukturellen Veränderungen in der kleinen ribosomalen Untereinheit.

Zu guter Letzt fßhrte die Strukturanalyse und in silico Sortierung der erhaltenen Translationsintermediate zu der Identifikation zweier bisher nicht beobachteten Unterzustände des 80S rotierten Prä-Ribosoms sowie zu der erstmaligen Visualizierung zweier verschiedener, nativer Initiationskomplexe.

1. Summary/Zusammenfassung

Subsections of 2. Introduction

Common principles of protein biosynthesis

A current theory states that it was RNA that stood at the beginning of life on our planet (Gesteland, R.F., Cech, T.R., 1999). Yet, the later appearing proteins outperformed RNA in so many fields that those early, self-sufficient RNA constructs are now extinct. Whereas RNA is composed by a combination of basically four different types of nucleotides and is relatively limited in its ability to form tertiary structure, proteins are highly flexible chains built from twenty amino acids that can fold in a larger variety of three-dimensional shapes. The amount of building blocks (twenty compared to only four in RNA – leaving aside base modifications) equips them with a high degree of adaptability to different tasks and might be the reason for their superiority to RNA in many fields.

To build such a peptide chain, amino acids have to be linked in the correct order via peptide bond formation. Although there exist proteins which are able to catalyze peptide bonds, like the sortase (Mazmanian et al., 1999), in all kingdoms of life the responsibility for building these peptide chains lies in a ribonucleoprotein particle: a macromolecular machine called the ribosome.

General features of the ribosome

The ribosome consists of a large and a small subunit. Both are made up of ribosomal RNA (rRNA) and ribosomal proteins [(]{.FIGURE-HINWEIS}[Figure 1]{.FIGURE-HINWEIS}[)]{.FIGURE-HINWEIS} [(]{.FIGURE-HINWEIS}[Animation 1]{.FIGURE-HINWEIS}[)]{.FIGURE-HINWEIS}. The basic mechanism of protein synthesis is very similar in all domains of life: A messenger RNA (mRNA) contains the sequence of the protein and is bound and read by the small ribosomal subunit in collaboration with specific transfer RNAs (tRNAs). tRNAs carry the amino acids and contain characteristic anticodons, which establish base pairing with the respective codons on the mRNA presented to them by the ribosome. Matching allows for addition of the amino acid to the growing peptide chain. After all amino acids have been added, the peptide chain is released from the ribosome and, if needed, further processed by other cell components to become the final, folded protein.

Although the three domains of life, bacteria, eukaryotes, and archaea, all possess ribosomes for protein synthesis, the composition of the ribosomes varies, leading to sometimes very different overall appearance of ribosomes from different kingdoms of life (Amunts et al., 2015; Behrmann et al., 2015; Dunkle et al., 2011; Melnikov et al., 2012; Ramrath et al., 2018) ([Figure 2]{.FIGURE-HINWEIS}

).

blabla Image Caption
Figure 1 blabla Image Caption

The eukaryotic cytoplasmic 80S ribosome is larger than the bacterial 70S ribosome, containing additional RNA segments and additional proteins. Comparison reveals that the eukaryotic ribosome possesses the same conserved structures as the bacterial ribosome in its core ([Figure 2]{.FIGURE-HINWEIS}[A]{.FIGURE-HINWEIS}) and an outer shell where eukaryote-specific elements are located ([Figure 1]{.FIGURE-HINWEIS}[, ]{.FIGURE-HINWEIS}[Figure 2]{.FIGURE-HINWEIS}) (Melnikov et al., 2012).

Not only the ribosomes themselves differ by certain features and are differently sensitive to antibiotics (Yusupova and Yusupov, 2017), but also the interacting factors that render translation possible are for some stages of translation remarkably different (Andersen et al., 2006) and might be an expression of the way the ribosome has been optimized for its bacterial, archaean, or eukaryotic cell environment.

Aim 1

Aim 1

Anatomy

The size of the assembled 80S mammalian ribosome is about 4.3 MDa (Wool, 1979). Both subunits are made of ribosomal RNA (rRNA) and ribosomal proteins (Wool, 1979). Upon joining of the large 60S (50S in bacteria) subunit and the small 40S (30S in bacteria) subunit to the 80S ribosome (70S in bacteria), a functionally important compartment is formed, the so-called intersubunit space [(]{.FIGURE-HINWEIS}[Figure 1]{.FIGURE-HINWEIS}[), ]{.FIGURE-HINWEIS}which is one of the main sites of action during protein synthesis. Across it span three tRNA-binding sites, named A (Aminoacyl)-, P (Peptidyl)-, and E (Exit)-sites. Additionally, the ribosome has specific factor binding sites for the interaction with protein factors, like the P-stalk [(]{.FIGURE-HINWEIS}[Figure 3]{.FIGURE-HINWEIS}[)]{.FIGURE-HINWEIS}.

[]{#rRNA is the catalytically active component of the ribosome}

rRNA is the catalytically active component of the ribosome

The rRNA possesses the catalytic activity to perform peptide bond formation and is the main player in protein synthesis. The large (60S) subunit contains three rRNA molecules: the 28S rRNA, the 5S rRNA and the 5.8S rRNA [(]{.FIGURE-HINWEIS}[Suplemental Figure 1]{.FIGURE-HINWEIS}[, ]{.FIGURE-HINWEIS}[Suplemental Figure 2]{.FIGURE-HINWEIS}). The small (40S) subunit contains only one rRNA molecule, the 18S rRNA [(]{.FIGURE-HINWEIS}[Supplemental Figure 3]{.FIGURE-HINWEIS}[)]{.FIGURE-HINWEIS}. The rRNA regions responsible for mRNA-recognition, tRNA-binding and peptidyl-transfer are highly conserved in all kingdoms of life (Gesteland, R.F., Cech, T.R., 1999). Among these conserved regions are the sarcin ricin loop (SRL) on the large subunit, interacting with GTP-hydrolyzing protein factors that catalyze certain steps of translation. In the peptidyltransferase center (PTC), also located on the large subunit, the RNA alone is responsible for catalyzing the formation of the peptide bond (Nissen et al., 2000; Spahn et al., 2000). The small subunit 18S rRNA contains the decoding center (DC), which monitors correct tRNA-anticodon matching to the mRNA codon.

Different from bacterial rRNA, eukaryotic 18S rRNA and 28S rRNA contain several expansion segments, long elements of additional rRNA that are to a great deal responsible for the big difference in size between bacterial and mammalian ribosomes. The function of these expansion segments is not yet clear, and their structural investigation is hindered by their high flexibility and peripheral location, making it very difficult to obtain high-resolution structural information (Ramesh and Woolford, 2016; Yusupova and Yusupov, 2017). There is some evidence, however, that expansion segments may play a role in ribosome biogenesis (Ramesh and Woolford, 2016).

Despite the rRNA’s prominent role in translation, the ribosome would not function without ribosomal proteins. They are important for rRNA folding and assembly and stabilize the tertiary structure of rRNA and the ribosome’s functional centers. There are 33 ribosomal proteins on the 40S and 47 ribosomal proteins on the 60S subunit of the mammalian ribosome. Following a recent convention (Ban et al., 2014) universally conserved proteins are prefixed ‘u’, unique bacterial ones ‘b’, unique eukaryotic ones ’e’, and unique archaeal ones ‘a’ [(]{.FIGURE-HINWEIS}[Supplemental Figure 4]{.FIGURE-HINWEIS}[, ]{.FIGURE-HINWEIS}[Supplemental Figure 5]{.FIGURE-HINWEIS}[)]{.FIGURE-HINWEIS}.

[]{#The three-dimensional shape of the ribosome is optimized for its function}

The three-dimensional shape of the ribosome is optimized for its function

The 40S subunit can be morphologically divided into several regions, named after the 40S subunit’s resemblance in shape to a bird: Looking at it from the solvent site, on top is the 40S ‘head’ with its prominent ‘beak’, below follows the ’neck’, and the ‘body’ is supplemented by the ‘platform’, ‘shoulder’ and ‘foot’ domains ([Figure 3]{.FIGURE-HINWEIS}). In this work, a rough division into two parts will be used: the 40S head (including beak) and the 40S body/platform, comprising the remaining domains. Importantly, the link between the 40S head and 40S body/platform is flexible and allows for intrasubunit motions. Visible from the intersubunit space, there are the three 40S tRNA binding sites that are distributed among the 40S head and 40S body/platform: A, P, and E ([Figure 3]{.FIGURE-HINWEIS}). The rRNA residues that constitute the tRNA binding sites are well-conserved [(]{.FIGURE-HINWEIS}[Supplemental Figure 1]{.FIGURE-HINWEIS}>, [Supplemental Figure 2]{.FIGURE-HINWEIS}[, ]{.FIGURE-HINWEIS}[Supplemental Figure 3]{.FIGURE-HINWEIS}).

The large (60S) subunit is characterized by several landmarks; The central protuberance, the P-stalk/stalk base and the L1 stalk ([Figure 3]{.FIGURE-HINWEIS}[C-D]{.FIGURE-HINWEIS}). From the solvent side, one can see the ribosomal exit tunnel, from which the newly synthesized protein emerges. The solvent side is to a large degree covered by expansion segment ES7, the largest expansion segment of the 28S rRNA [Figure 3]{.FIGURE-HINWEIS}[C]{.FIGURE-HINWEIS}). Looking on the 60S from the intersubunit space reveals the A-, P-, and E-tRNA binding sites and the sarcin-ricin loop (SRL) ([Figure 3D]{.FH}).

Aim 1

Aim 1

Aim 1

1. Summary/Zusammenfassung

Subsections of 3. Aims

Aim 1

To visualize and mechanistically understand mammalian translocation.

Translocation is one of the least understood processes in protein biosynthesis. Its correct completion is crucial for the continuation of the translation elongation cycle, and ultimately for protein synthesis. As upon translocation, the contacts between the ribosome and the tRNA2•mRNA-module extensively rearrange, it is a process which requires utmost accuracy. Efficient translocation depends on the action of the specialized GTPase eEF2; however, detailed insights into the mechanism, by which eEF2 catalyzes translocation is lacking and opposing hypotheses are vividly discussed: The Brownian ratchet model, in which eEF2 is supporting intrinsic conformational changes that lead to translocation, and the power stroke model, according to which eEF2, being a motor protein, actively moves the tRNAs in the direction of translocation (Chen et al., 2016; Liu et al., 2014; Rodnina et al., 1997; Spirin, 2009).

Moreover, structural knowledge on tRNA translocation is dominated by studies carried out in the bacterial system, and structural data on mammalian tRNA translocation does not exist. Therefore, this work is dedicated to studying how translocation is performed in the mammalian system, using an in vitro reconstitution of a rabbit 80S•tRNA2•mRNA•eEF2•GMPPNP complex. The goal is to obtain structures of mammalian translocation intermediates to characterize mammalian translocation and compare it to translocation in the bacterial and yeast system.

Aim 2

To investigate the 80S•tRNA2•mRNA•eEF2•GDP complex that is observed upon addition of eEF2•GTP to a programmed PRE complex.

To understand why eEF2 can stably bind to ribosomes and two tRNAs in vitro (Budkevich et al., 2014), and how this fits to the model of translocation, I look at an in vitro reconstituted rabbit 80S•tRNA2•mRNA•eEF2•GDP complex.

Aim 3

To revisit the mammalian polysome landscape to find out if serum deprivation influences the distribution of states.

Cryo-EM of actively translating polysomes gives insight into the energy landscape of mammalian translation (Behrmann et al., 2015). Among other stimuli, serum deprivation and subsequent serum restimulation has been hypothesized to influence translation, e.g. via changing polysome patterns (Duncan and McConkey, 1982; Viero et al., 2015). I want to investigate if overnight serum deprivation and 30 minutes of serum restimulation can change the energy landscape of translation.

Aim 4

To look at the phosphorylation site of ribosomal protein eS6 and its possible impact on its surrounding structures to find out the role of eS6 phosphorylation.

The investigation of structural changes induced by eS6 phosphorylation is the fourth aim of this thesis. eS6 is a eukaryote-specific protein of the 40S subunit. It undergoes phosphorylation in response to various stimuli, including serum deprivation/restimulation. Surprisingly, there are almost no works tackling the role of eS6 phosphorylation from a structural perspective. Since structural information on the eukaryotic ribosome from crystal structures and cryo-EM density maps have emerged in the last years, eS6 could be structurally characterized in yeast and recently also in mammalian ribosomes. However, the last residues of the C-terminus of eS6, including all five phosphorylatable serines, are missing in the available structures, and similarly the neighbouring expansion segments are not well resolved, such that the phosphorylation and its structural consequences are not characterized yet (Behrmann et al., 2015; Ben-Shem et al., 2011). This thesis aims to investigate the C-terminal region of eS6 and its surrounding.

1. Summary/Zusammenfassung

Subsections of 10. References

References

Abeyrathne, P.D., Koh, C.S., Grant, T., Grigorieff, N., & Korostelev, A.A. (2016). Ensemble cryo-EM uncovers inchworm-like translocation of a viral IRES through the ribosome. eLife, 5, e14874.

Adams, P.D., Afonine, P.V., BunkĂłczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.-W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr., 66, 213-221.

Afonina, Z.A., Myasnikov, A.G., Khabibullina, N.F., Belorusova, A.Y., Menetret, J.-F., Vasiliev, V.D., Klaholz, B.P., Shirokov, V.A., & Spirin, A.S. (2013). Topology of mRNA chain in isolated eukaryotic double-row polyribosomes. Biochem., 78, 445-454.

Afonina, Z.A., Myasnikov, A.G., Shirokov, V.A., Klaholz, B.P., & Spirin, A.S. (2014). Formation of circular polyribosomes on eukaryotic mRNA without cap-structure and poly(A)-tail: a cryo electron tomography study. Nucleic Acids Res., 42, 9461-9469.

Agirrezabala, X., Lei, J., Brunelle, J.L., Ortiz-Meoz, R.F., Green, R., & Frank, J. (2008). Visualization of the Hybrid State of tRNA Binding Promoted by Spontaneous Ratcheting of the Ribosome. Mol. Cell, 32, 190-197.

Alejo, J.L., & Blanchard, S.C. (2017). Miscoding-induced stalling of substrate translocation on the bacterial ribosome. Proc. Natl. Acad. Sci., 114, 201707539.

Allen, G.S., Zavialov, A., Gursky, R., Ehrenberg, M., & Frank, J. (2005). The Cryo-EM Structure of a Translation Initiation Complex from Escherichia coli. Cell, 121, 703-712.

Amunts, A., Brown, A., Toots, J., Scheres, S.H.W., & Ramakrishnan, V. (2015). The structure of the human mitochondrial ribosome. Science, 348, 95-98.

Andersen, C.B.F., Becker, T., Blau, M., Anand, M., Halic, M., Balar, B., Mielke, T., Boesen, T., Pedersen, J.S., Spahn, C.M.T., et al. (2006). Structure of eEF3 and the mechanism of transfer RNA release from the E-site. Nature, 443, 663-668.

Antoun, A., Pavlov, M.Y., Andersson, K., Tenson, T., & Ehrenberg, M. (2003). The roles of initiation factor 2 and guanosine triphosphate in initiation of protein synthesis. EMBO J., 22, 5593-5601.

Archer, S.K., Shirokikh, N.E., Beilharz, T.H., & Preiss, T. (2016). Dynamics of ribosome scanning and recycling revealed by translation complex profiling. Nature, 535, 570-574.

Bah, A., Vernon, R.M., Siddiqui, Z., Krzeminski, M., Muhandiram, R., Zhao, C., Sonenberg, N., Kay, L.E., & Forman-Kay, J.D. (2015). Folding of an intrinsically disordered protein by phosphorylation as a regulatory switch. Nature, 519, 106-109.

Ban, N., Beckmann, R., Cate, J.H.D., Dinman, J.D., Dragon, F., Ellis, S.R., Lafontaine, D.L.J., Lindahl, L., Liljas, A., Lipton, J.M., et al. (2014). A new system for naming ribosomal proteins. Curr. Opin. Struct. Biol., 24, 165-169.

Bandi, H.R., Ferrari, S., Krieg, J., Meyer, H.E., & Thomas, G. (1993). Identification of 40 S ribosomal protein S6 phosphorylation sites in Swiss mouse 3T3 fibroblasts stimulated with serum. J. Biol. Chem., 268, 4530-4533.

Bartesaghi, A., Aguerrebere, C., Falconieri, V., Banerjee, S., Earl, L.A., Zhu, X., Grigorieff, N., Milne, J.L.S., Sapiro, G., Wu, X., et al. (2018). Atomic Resolution Cryo-EM Structure of β-Galactosidase. Structure, 26, 848-856.e3.

Barth-Baus, D., Stratton, C.A., Parrott, L., Myerson, H., Meyuhas, O., Templeton, D.J., Landreth, G.E., & Hensold, J.O. (2002). S6 phosphorylation-independent pathways regulate translation of 5’-terminal oligopyrimidine tract-containing mRNAs in differentiating hematopoietic cells. Nucleic Acids Res., 30, 1919-1928.

Becker, T., Armache, J.-P., Jarasch, A., Anger, A.M., Villa, E., Sieber, H., Motaal, B.A., Mielke, T., Berninghausen, O., & Beckmann, R. (2011). Structure of the no-go mRNA decay complex Dom34–Hbs1 bound to a stalled 80S ribosome. Nat. Struct. Mol. Biol., 18, 715-720.

Behrmann, E., Loerke, J., Budkevich, T.V., Yamamoto, K., Schmidt, A., Penczek, P.A., Vos, M.R., BĂźrger, J., Mielke, T., Scheerer, P., et al. (2015). Structural Snapshots of Actively Translating Human Ribosomes. Cell, 161, 845-857.

Belandia, B., Brautigan, D., & MartĂ­n-PĂŠrez, J. (1994). Attenuation of ribosomal protein S6 phosphatase activity in chicken embryo fibroblasts transformed by Rous sarcoma virus. Mol. Cell. Biol., 14, 200-206.

Belardinelli, R., Sharma, H., Peske, F., Wintermeyer, W., & Rodnina, M.V. (2016). Translocation as continuous movement through the ribosome. RNA Biol., 13, 1-7.

Ben-Shem, A., Jenner, L., Yusupova, G., & Yusupov, M. (2010). Crystal Structure of the Eukaryotic Ribosome. Science, 330, 1203-1209.

Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova, G., & Yusupov, M. (2011). The structure of the eukaryotic ribosome at 3.0 Å resolution. Science, 334, 1524-1529.

Berman, H.M. (2000). The Protein Data Bank. Nucleic Acids Res., 28, 235-242.

Bhat, M., Robichaud, N., Hulea, L., Sonenberg, N., Pelletier, J., & Topisirovic, I. (2015). Targeting the translation machinery in cancer. Nat. Rev. Drug Discov., 14, 261-278.

Blanchard, S.C., Kim, H.D., Gonzalez, R.L., Puglisi, J.D., & Chu, S. (2004). tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci., 101, 12893-12898.

Bommer, U., Burkhardt, N., Junemann, R., Spahn, C.M.T., Triana-Alonso, & F. Nierhaus, K.H. (1997). Ribosomes and polysomes. In Subcellular Fractionation: A Practical Approach, J. Graham and D. Rickwood, Eds., (Washington, DC: IRL Press), pp. 271-301.

Bourne, H.R., Sanders, D.A., & McCormick, F. (1991). The GTPase superfamily: conserved structure and molecular mechanism. Nature, 349, 117-127.

Brandt, F., Carlson, L.-A.A., Hartl, F.U., Baumeister, W., & GrĂźnewald, K. (2010). The Three-Dimensional Organization of Polyribosomes in Intact Human Cells. Mol. Cell, 39, 560-569.

Brilot, A.F., Korostelev, A.A., Ermolenko, D.N., & Grigorieff, N. (2013). Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc. Natl. Acad. Sci., 110, 20994-20999.

Budkevich, T., Giesebrecht, J., Altman, R.B., Munro, J.B., Mielke, T., Nierhaus, K.H., Blanchard, S.C., & Spahn, C.M.T. (2011). Structure and Dynamics of the Mammalian Ribosomal Pretranslocation Complex. Mol. Cell, 44, 214-224.

Budkevich, T.V., El’skaya, A.V., & Nierhaus, K.H. (2008). Features of 80S mammalian ribosome and its subunits. Nucleic Acids Res., 36, 4736-4744.

Budkevich, T.V., Giesebrecht, J., Behrmann, E., Loerke, J., Ramrath, D.J.F., Mielke, T., Ismer, J., Hildebrand, P.W., Tung, C.S., Nierhaus, K.H., et al. (2014). Regulation of the mammalian elongation cycle by subunit rolling: A eukaryotic-specific ribosome rearrangement. Cell, 158, 121-131.

Carter, A.P., Clemons, W.M., Brodersen, D.E., Morgan-Warren, R.J., Hartsch, T., Wimberly, B.T., & Ramakrishnan, V. (2001). Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science, 291, 498-501.

Chaisuparat, R., Rojanawatsirivej, S., & Yodsanga, S. (2013). Ribosomal Protein S6 Phosphorylation is Associated with Epithelial Dysplasia and Squamous Cell Carcinoma of the Oral Cavity. Pathol. Oncol. Res., 19, 189-193.

Chauvin, C., Koka, V., Nouschi, A., Mieulet, V., Hoareau-Aveilla, C., Dreazen, A., Cagnard, N., Carpentier, W., Kiss, T., Meyuhas, O., et al. (2014). Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene, 33, 474-483.

Chen, J.Z., & Grigorieff, N. (2007). SIGNATURE: A single-particle selection system for molecular electron microscopy. J. Struct. Biol., 157, 168-173.

Chen, C., Cui, X., Beausang, J.F., Zhang, H., Farrell, I., Cooperman, B.S., & Goldman, Y.E. (2016). Elongation factor G initiates translocation through a power stroke. Proc. Natl. Acad. Sci., 113, 7515-7520.

Chen, J., Petrov, A., Tsai, A., O’Leary, S.E., & Puglisi, J.D. (2013). Coordinated conformational and compositional dynamics drive ribosome translocation. Nat. Struct. Mol. Biol., 20, 718-727.

Chen, V.B., Arendall, W.B., Headd, J.J., Keedy, D.A., Immormino, R.M., Kapral, G.J., Murray, L.W., Richardson, J.S., & Richardson, D.C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr., 66, 12-21.

Cheng, Y., Grigorieff, N., Penczek, P.A., & Walz, T. (2015). A Primer to Single-Particle Cryo-Electron Microscopy. Cell, 161, 438-449.

Chou, F.-C., Sripakdeevong, P., Dibrov, S.M., Hermann, T., & Das, R. (2012). Correcting pervasive errors in RNA crystallography through enumerative structure prediction. Nat. Methods, 10, 74-76.

Connell, S.R., Takemoto, C., Wilson, D.N., Wang, H., Murayama, K., Terada, T., Shirouzu, M., Rost, M., SchĂźler, M., Giesebrecht, J., et al. (2007). Structural Basis for Interaction of the Ribosome with the Switch Regions of GTP-Bound Elongation Factors. Mol. Cell, 25, 751-764.

Cornish, P.V., Ermolenko, D.N., Noller, H.F., & Ha, T. (2008). Spontaneous Intersubunit Rotation in Single Ribosomes. Mol. Cell, 30, 578-588.

Crick, F. (1970). Central Dogma of Molecular Biology. Nature, 227, 561-563.

Cukras, A.R., Southworth, D.R., Brunelle, J.L., Culver, G.M., & Green, R. (2003). Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex. Mol. Cell, 12, 321-328.

Czworkowski, J., & Moore, P.B. (1997). The conformational properties of elongation factor G and the mechanism of translocation. Biochemistry, 36, 10327-10334.

Czworkowski, J., Wang, J., Steitz, T.A., & Moore, P.B. (1994). The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. EMBO J., 13, 3661-3668.

Danev, R., & Baumeister, W. (2017). Expanding the boundaries of cryo-EM with phase plates. Curr. Opin. Struct. Biol., 46, 87-94.

Dauden, M.I., Kosinski, J., Kolaj‐Robin, O., Desfosses, A., Ori, A., Faux, C., Hoffmann, N.A., Onuma, O.F., Breunig, K.D., Beck, M., et al. (2017). Architecture of the yeast Elongator complex. EMBO Rep., 18, 264-279.

Davydova, E.K., & Ovchinnikov, L.P. (1990). ADP-ribosylated elongation factor 2 (ADP-ribosyl-EF-2) is unable to promote translocation within the ribosome. FEBS Lett., 261, 350-352.

Davydova, E.K., Malinin, N.L., & Ovchinnikov, L.P. (1993). Ribosomes terminated in vitro are in a tight association with non-phosphorylated elongation factor 2 (eEF-2) and GDP. Eur. J. Biochem., 215, 291-296.

Dubochet, J., Adrian, M., Chang, J.J., Homo, J.C., Lepault, J., McDowall, A.W., & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys., 21, 129-228.

Duncan, R., & McConkey, E.H. (1982). Preferential Utilization of Phosphorylated 40‐S Ribosomal Subunits during Initiation Complex Formation. Eur. J. Biochem., 123, 535-538.

Dunkle, J.A., Wang, L., Feldman, M.B., Pulk, A., Chen, V.B., Kapral, G.J., Noeske, J., Richardson, J.S., Blanchard, S.C., & Cate, J.H.D. (2011). Structures of the Bacterial Ribosome in Classical and Hybrid States of tRNA Binding. Science, 332, 981-984.

Egerton, R.F., Li, P., & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron, 35, 399-409.

Eliseev, B., Yeramala, L., Leitner, A., Karuppasamy, M., Raimondeau, E., Huard, K., Alkalaeva, E., Aebersold, R., & Schaffitzel, C. (2018). Structure of a human cap-dependent 48S translation pre-initiation complex. Nucleic Acids Res., 46, 2678-2689.

Emsley, P., & Cowtan, K. (2004). Coot: Model-building tools for molecular graphics. Acta Crystallogr. Sect. D Biol. Crystallogr., 60, 2126-2132.

Fasken, M.B., & Corbett, A.H. (2009). Mechanisms of nuclear mRNA quality control. RNA Biol., 6, 237-241.

Ferguson, A., Wang, L., Altman, R.B., Terry, D.S., Juette, M.F., Burnett, B.J., Alejo, J.L., Dass, R.A., Parks, M.M., Vincent, C.T., et al. (2015). Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis. Mol. Cell, 60, 475-486.

Flis, J., Holm, M., Rundlet, E.J., Loerke, J., Hilal, T., Dabrowski, M., BĂźrger, J., Mielke, T., Blanchard, S.C., Spahn, C.M.T., et al. (2018). tRNA Translocation by the Eukaryotic 80S Ribosome and the Impact of GTP Hydrolysis. Cell Rep., 25, 2676-2688.e7.

Frank, J., & Agrawal, R.K. (2000). A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature, 406, 318-322.

Frank, J., Penczek, P., & Liu, W. (1992). Alignment, classification, and three-dimensional reconstruction of single particles embedded in ice. Scanning Microsc. Suppl., 6, 11-20; discussion 20-22.

Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., & Leith, A. (1996). SPIDER and WEB: Processing and Visualization of Images in 3D Electron Microscopy and Related Fields. J. Struct. Biol., 116, 190-199.

Frauenfelder, H., Sligar, S.G., & Wolynes, P.G. (1991). The energy landscapes and motions of proteins. Science, 254, 1598-1603.

Gao, H., Zhou, Z., Rawat, U., Huang, C., Bouakaz, L., Wang, C., Cheng, Z., Liu, Y., Zavialov, A., Gursky, R., et al. (2007). RF3 Induces Ribosomal Conformational Changes Responsible for Dissociation of Class I Release Factors. Cell, 129, 929-941.

Gao, Y.-G., Selmer, M., Dunham, C.M., Weixlbaumer, A., Kelley, A.C., & Ramakrishnan, V. (2009). The Structure of the Ribosome with Elongation Factor G Trapped in the Posttranslocational State. Science, 326, 694-699.

Gavrilova, L.P., & Spirin, A.S. (1971). Stimulation of non-enzymic translocation in ribosomes by p-chloromercuribenzoate. FEBS Lett., 17, 324-326.

Gavrilova, L.P., Kostiashkina, O.E., Koteliansky, V.E., Rutkevitch, N.M., & Spirin, A.S. (1976). Factor-free and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J. Mol. Biol., 101, 537-552.

Gesteland, R.F., Cech, T.R., & Atkins, J.F. (1999). The RNA World (Cold Spring Harbor, New York). Cold Spring Harbor Laboratory Press.

Granot, Z., Swisa, A., Magenheim, J., Stolovich-Rain, M., Fujimoto, W., Manduchi, E., Miki, T., Lennerz, J.K., Stoeckert, C.J., Meyuhas, O., et al. (2009). LKB1 regulates pancreatic beta cell size, polarity, and function. Cell Metab., 10, 296-308.

Greber, B.J., Bieri, P., Leibundgut, M., Leitner, A., Aebersold, R., Boehringer, D., & Ban, N. (2015). The complete structure of the 55S mammalian mitochondrial ribosome. Science, 348, 303-308.

Gressner, A.M., & Wool, I.G. (1974). The stimulation of the phosphorylation of ribosomal protein S6 by cycloheximide and puromycin. Biochem. Biophys. Res. Commun., 60, 1482-1490.

Hallinan, T., Eden, E., & North, R. (1962). The Structure and Composition of Rat Reticulocytes. Blood, 20, 50-63.

Hansen, J.L., Schmeing, T.M., Moore, P.B., & Steitz, T.A. (2002). Structural insights into peptide bond formation. Proc. Natl. Acad. Sci. U. S. A., 99, 11670-11675.

Harauz, G., & van Heel, M. (1986). Exact Filters for General Geometry Three Dimensional Reconstruction. Optik (Stuttg)., 74, 146-156.

Hartman, H., & Smith, T.F. (2010). GTPases and the origin of the ribosome. Biol. Direct, 5, 36.

Hashem, Y., & Frank, J. (2018). The Jigsaw Puzzle of mRNA Translation Initiation in Eukaryotes: A Decade of Structures Unraveling the Mechanics of the Process. Annu. Rev. Biophys., 47, 125-151.

Hashem, Y., Des Georges, A., Dhote, V., Langlois, R., Liao, H.Y., Grassucci, R.A., Hellen, C.U.T., Pestova, T.V., & Frank, J. (2013). Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell, 153, 1108-1119.

van Heel, M., & Schatz, M. (2005). Fourier shell correlation threshold criteria. J. Struct. Biol., 151, 250-262.

Hilal, T., Yamamoto, H., Loerke, J., BĂźrger, J., Mielke, T., & Spahn, C.M.T. (2016). Structural insights into ribosomal rescue by Dom34 and Hbs1 at near-atomic resolution. Nat. Commun., 7, 13521.

Hirashima, A., & Kaji, A. (1970). Factor dependent breakdown of polysomes. Biochem. Biophys. Res. Commun., 41, 877-883.

Horan, L.H., & Noller, H.F. (2007). Intersubunit movement is required for ribosomal translocation. Proc. Natl. Acad. Sci. U. S. A., 104, 4881-4885.

Hutchinson, J.A., Shanware, N.P., Chang, H., & Tibbetts, R.S. (2011). Regulation of ribosomal protein S6 phosphorylation by casein kinase 1 and protein phosphatase 1. J. Biol. Chem., 286, 8688-8696.

Inoue-Yokosawa, N., & Kaziro, Y. (1974). The role of guanosine triphosphate in translocation reaction catalyzed by elongation factor G. Biochem. Biophys. Res. Commun., 60, 4321-4323.

Isken, O., & Maquat, L.E. (2007). Quality control of eukaryotic mRNA: Safeguarding cells from abnormal mRNA function. Genes Dev., 21, 1833-1856.

Jackson, R.J., Hellen, C.U.T., & Pestova, T.V. (2010). The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol., 11, 113-127.

Jackson, R.J., Hellen, C.U.T., & Pestova, T.V. (2012). Termination and post-termination events in eukaryotic translation. Adv. Protein Chem. Struct. Biol., 86, 45-93.

Jagannathan, S., Nwosu, C., & Nicchitta, C.V. (2011). Analyzing mRNA Localization to the Endoplasmic Reticulum via Cell Fractionation. In Methods in Molecular Biology (Humana Press, Totowa, NJ), pp. 301-321.

de Jong, A.F., & Van Dyck, D. (1993). Ultimate resolution and information in electron microscopy II. The information limit of transmission electron microscopes. Ultramicroscopy, 49, 66-80.

Juhling, F., Morl, M., Hartmann, R.K., Sprinzl, M., Stadler, P.F., & Putz, J. (2009). tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res., 37, D159-D162.

Karbstein, K. (2011). Inside the 40S ribosome assembly machinery. Curr. Opin. Chem. Biol., 15, 657-663.

Khatter, H., Myasnikov, A.G., Natchiar, S.K., & Klaholz, B.P. (2015). Structure of the human 80S ribosome. Nature, 520, 640-645.

Kim, S.-H., Jang, Y.H., Chau, G.C., Pyo, S., & Um, S.H. (2013). Prognostic significance and function of phosphorylated ribosomal protein S6 in esophageal squamous cell carcinoma. Int. J. Cancer, 132, 19-30.

Kolupaeva, V.G., Unbehaun, A., Lomakin, I.B., Hellen, C.U.T., & Pestova, T.V. (2005). Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA, 11, 470-486.

Kozak, M. (1999). Initiation of translation in prokaryotes and eukaryotes. Gene, 234, 187-208.

Kuhlbrandt, W. (2014). The Resolution Revolution. Science, 343, 1443-1444.

Kumar, P., Hellen, C.U.T., & Pestova, T.V. (2016). Toward the mechanism of eIF4F-mediated ribosomal attachment to mammalian capped mRNAs. Genes Dev., 30, 1573-1588.

Lee, A.S.Y., Kranzusch, P.J., Doudna, J.A., & Cate, J.H.D. (2016). eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation. Nature, 536, 96-99.

Li, X., Mooney, P., Zheng, S., Booth, C.R., Braunfeld, M.B., Gubbens, S., Agard, D.A., & Cheng, Y. (2013). Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods, 10, 584-590.

Li, Y., Mitsuhashi, S., Ikejo, M., Miura, N., Kawamura, T., Hamakubo, T., & Ubukata, M. (2012). Relationship between ATM and Ribosomal Protein S6 Revealed by the Chemical Inhibition of Ser/Thr Protein Phosphatase Type 1. Biosci. Biotechnol. Biochem., 76, 486-494.

Liao, H.Y., Hashem, Y., & Frank, J. (2015). Efficient Estimation of Three-Dimensional Covariance and its Application in the Analysis of Heterogeneous Samples in Cryo-Electron Microscopy. Structure, 23, 1129-1137.

Liljas, A., Ehrenberg, M., & Åqvist, J. (2011). Comment on “The mechanism for activation of GTP hydrolysis on the ribosome”. Science, 333, 37; author reply 37.

Ling, C., & Ermolenko, D.N. (2016). Structural insights into ribosome translocation. Wiley Interdiscip. Rev. RNA, 7, 620-636.

Liu, T., Kaplan, A., Alexander, L., Yan, S., Wen, J. Der, Lancaster, L., Wickersham, C.E., Fredrick, K., Fredrik, K., Noller, H., et al. (2014). Direct measurement of the mechanical work during translocation by the ribosome. Elife, 3, e03406.

Lodish, H.F. (1974). Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature, 251, 365-448.

Loerke, J., Giesebrecht, J., & Spahn, C.M.T. (2010). Multiparticle Cryo-EM of Ribosomes. Methods Enzymol., 483, 161-177.

Lomakin, I.B., & Steitz, T.A. (2013). The initiation of mammalian protein synthesis and mRNA scanning mechanism. Nature, 500, 307-311.

Mao, Y., Wang, L., Gu, C., Herschhorn, A., DĂŠsormeaux, A., Finzi, A., Xiang, S.-H., & Sodroski, J.G. (2013). Molecular architecture of the uncleaved HIV-1 envelope glycoprotein trimer. Proc. Natl. Acad. Sci. U.S.A., 110, 12438-12443.

Maracci, C., & Rodnina, M.V. (2016). Review: Translational GTPases. Biopolymers, 105, 463-475.

Marcotrigiano, J., Gingras, A.C., Sonenberg, N., & Burley, S.K. (1999). Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol. Cell, 3, 707-716.

MĂĄrquez, V., Wilson, D.N., Tate, W.P., Triana-Alonso, F., & Nierhaus, K.H. (2004). Maintaining the ribosomal reading frame: The influence of the E site during translational regulation of release factor 2. Cell, 118, 45-55.

Martin-PĂŠrez, J., & Thomas, G. (1983). Ordered phosphorylation of 40S ribosomal protein S6 after serum stimulation of quiescent 3T3 cells. Proc. Natl. Acad. Sci. U. S. A., 80, 926-930.

Mastronarde, D.N. (2005). Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol., 152, 36-51.

Mazmanian, S.K., Liu, G., Ton-That, H., & Schneewind, O. (1999). Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science, 285, 760-763.

Meister, G. (2011). RNA biology: an introduction. Wiley-VCH.

Melnikov, S., Ben-Shem, A., Garreau de Loubresse, N., Jenner, L., Yusupova, G., & Yusupov, M. (2012). One core, two shells: bacterial and eukaryotic ribosomes. Nat. Struct. Mol. Biol., 19, 560-567.

Meyuhas, O. (2008). Chapter 1 Physiological Roles of Ribosomal Protein S6: One of Its Kind. Int. Rev. Cell Mol. Biol., 268, 1-37.

Meyuhas, O. (2015). Ribosomal Protein S6 Phosphorylation: Four Decades of Research. In International Review of Cell and Molecular Biology, (Elsevier Ltd), pp. 41-73.

Mieulet, V., Roceri, M., Espeillac, C., Sotiropoulos, A., Ohanna, M., Oorschot, V., Klumperman, J., Sandri, M., & Pende, M. (2007). S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am. J. Physiol. Physiol., 293, C712-C722.

Milon, P., Konevega, A.L., Gualerzi, C.O., & Rodnina, M.V. (2008). Kinetic checkpoint at a late step in translation initiation. Mol. Cell, 30, 712-720.

Mirande, M. (2010). Processivity of translation in the eukaryote cell: Role of aminoacyl-tRNA synthetases. FEBS Lett., 584, 443-447.

Mitchell, S.F., & Parker, R. (2014). Principles and Properties of Eukaryotic mRNPs. Mol. Cell, 54, 547-558.

Moazed, D., & Noller, H.F. (1989). Intermediate states in the movement of transfer RNA in the ribosome. Nature, 342, 142-148.

Mohan, S., & Noller, H.F. (2017). Recurring RNA structural motifs underlie the mechanics of L1 stalk movement. Nat. Commun., 8, 14285.

Munro, J.B., Altman, R.B., O’Connor, N., & Blanchard, S.C. (2007). Identification of Two Distinct Hybrid State Intermediates on the Ribosome. Mol. Cell, 25, 505-517.

Munro, J.B., Sanbonmatsu, K.Y., Spahn, C.M.T., & Blanchard, S.C. (2009). Navigating the ribosome’s metastable energy landscape. Trends Biochem. Sci., 34, 390-400.

Munro, J.B., Altman, R.B., Tung, C.-S., Sanbonmatsu, K.Y., & Blanchard, S.C. (2010). A fast dynamic mode of the EF-G-bound ribosome. EMBO J., 29, 770-781.

Murray, J., Savva, C.G., Shin, B.S., Dever, T.E., Ramakrishnan, V., & FernĂĄndez, I.S. (2016). Structural characterization of ribosome recruitment and translocation by type IV IRES. Elife, 5, e14690.

Myasnikov, A.G., Afonina, Z.A., MĂŠnĂŠtret, J.-F., Shirokov, V.A., Spirin, A.S., & Klaholz, B.P. (2014). The molecular structure of the left-handed supra-molecular helix of eukaryotic polyribosomes. Nat. Commun., 5, 5294.

Nguyen, K., & Whitford, P.C. (2016). Steric interactions lead to collective tilting motion in the ribosome during mRNA-tRNA translocation. Nat. Commun., 7, 10586.

Nielsen, P.J., Duncan, R., & McConkey, E.H. (1981). Phosphorylation of Ribosomal Protein S6 Relationship to Protein Synthesis in HeLa Cells. Eur. J. Biochem., 120, 523-527.

Nierhaus, K.H. (1991). The assembly of prokaryotic ribosomes. Biochimie, 73, 739-755.

Nierhaus, K.H. (1993). Solution of the ribosome riddle: how the ribosome selects the correct aminoacyl-tRNA out of 41 similar contestants. Mol. Microbiol., 9, 661-669.

Nilsson, L., & NygĂĽrd, O. (1992). Reduced puromycin sensitivity of translocated polysomes after the addition of elongation factor 2 and non-hydrolysable GTP analogues. FEBS Lett., 309, 89-91.

Nissen, P., Hansen, J., Ban, N., Moore, P.B., & Steitz, T.A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science, 289, 920-930.

Ogle, J.M., Murphy IV, F.V., Tarry, M.J., & Ramakrishnan, V. (2002). Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell, 111, 721-732.

Oppenheimer, N.J., & Bodley, J.W. (1981). Diphtheria toxin. Site and configuration of ADP-ribosylation of diphthamide in elongation factor 2. J. Biol. Chem., 256, 8579-8581.

Orlova, E.V., & Saibil, H.R. (2011). Structural Analysis of Macromolecular Assemblies by Electron Microscopy. Chem. Rev., 111, 7710-7748.

Panić, L., Tamarut, S., Sticker-Jantscheff, M., Barkić, M., Solter, D., Uzelac, M., Grabusić, K., & Volarević, S. (2006). Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol. Cell. Biol., 26, 8880-8891.

Pelletier, J., & Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature, 334, 320-325.

Penczek, P.A., Frank, J., & Spahn, C.M.T. (2006). A method of focused classification, based on the bootstrap 3D variance analysis, and its application to EF-G-dependent translocation. J. Struct. Biol., 154, 184-194.

Pende, M., Um, S.H., Mieulet, V., Sticker, M., Goss, V.L., Mestan, J., Mueller, M., Fumagalli, S., Kozma, S.C., & Thomas, G. (2004). S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5’-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol. Cell. Biol., 24, 3112-3124.

Pestova, T.V., & Hellen, C.U.T. (2003). Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev., 17, 181-186.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., & Ferrin, T.E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem., 25, 1605-1612.

Pisarev, A.V., Skabkin, M.A., Pisareva, V.P., Skabkina, O.V., Rakotondrafara, A.M., Hentze, M.W., Hellen, C.U.T., & Pestova, T.V. (2010). The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell, 37, 196-210.

Pulk, A., & Cate, J.H.D. (2013). Control of Ribosomal Subunit Rotation by Elongation Factor G. Science, 340, 1235970.

Punjani, A., Rubinstein, J.L., Fleet, D.J., & Brubaker, M.A. (2017). cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods, 14, 290-296.

Radon, J. (1986). On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med. Imaging, 5, 170-176.

Ramesh, M., & Woolford, J.L. (2016). Eukaryote-specific rRNA expansion segments function in ribosome biogenesis. RNA, 22, 1153-1162.

Ramrath, D.J.F., Yamamoto, H., Rother, K., Wittek, D., Pech, M., Mielke, T., Loerke, J., Scheerer, P., Ivanov, P., Teraoka, Y., et al. (2012). The complex of tmRNA-SmpB and EF-G on translocating ribosomes. Nature, 485, 526-529.

Ramrath, D.J.F., Lancaster, L., Sprink, T., Mielke, T., Loerke, J., Noller, H.F., & Spahn, C.M.T. (2013). Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc. Natl. Acad. Sci., 110, 20964-20969.

Ramrath, D.J.F., Niemann, M., Leibundgut, M., Bieri, P., Prange, C., Horn, E.K., Leitner, A., Boehringer, D., Schneider, A., & Ban, N. (2018). Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science, 362, eaau7735.

Ratje, A.H., Loerke, J., Mikolajka, A., BrĂźnner, M., Hildebrand, P.W., Starosta, A.L., DĂśnhĂśfer, A., Connell, S.R., Fucini, P., Mielke, T., et al. (2010). Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature, 468, 713-716.

Reimer, L., & Kohl, H. (2008). Transmission electron microscopy: physics of image formation. Springer, 5th edition.

Rodnina, M.V., Savelsbergh, A., Katunin, V.I., & Wintermeyer, W. (1997). Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature, 385, 37-41.

Rogg, H., Wehrli, W., & Staehelin, M. (1969). Isolation of mammalian transfer RNA. BBA Sect. Nucleic Acids Protein Synth., 195, 13-15.

Rohou, A., & Grigorieff, N. (2015). CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J. Struct. Biol., 192, 216-221.

Rosenthal, P.B., & Henderson, R. (2003). Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol., 333, 721-745.

Roux, P.P., Shahbazian, D., Vu, H., Holz, M.K., Cohen, M.S., Taunton, J., Sonenberg, N., & Blenis, J. (2007). RAS/ERK Signaling Promotes Site-specific Ribosomal Protein S6 Phosphorylation via RSK and Stimulates Cap-dependent Translation. J. Biol. Chem., 282, 14056-14064.

Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc., 5, 725-738.

Rubinstein, J.L., & Brubaker, M.A. (2015). Alignment of cryo-EM movies of individual particles by optimization of image translations. J. Struct. Biol., 192, 188-195.

Ruvinsky, I., Sharon, N., Lerer, T., Cohen, H., Stolovich-Rain, M., Nir, T., Dor, Y., Zisman, P., & Meyuhas, O. (2005). Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev., 19, 2199-2211.

Ruvinsky, I., Katz, M., Dreazen, A., Gielchinsky, Y., Saada, A., Freedman, N., Mishani, E., Zimmerman, G., Kasir, J., & Meyuhas, O. (2009). Mice Deficient in Ribosomal Protein S6 Phosphorylation Suffer from Muscle Weakness that Reflects a Growth Defect and Energy Deficit. PLoS One, 4, e5618.

Scheres, S.H.W. (2012). RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol., 180, 519-530.

Schmeing, T.M., & Ramakrishnan, V. (2009). What recent ribosome structures have revealed about the mechanism of translation. Nature, 461, 1234-1242.

Schuette, J.-C., Murphy, F.V., Kelley, A.C., Weir, J.R., Giesebrecht, J., Connell, S.R., Loerke, J., Mielke, T., Zhang, W., Penczek, P.A., et al. (2009). GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J., 28, 755-765.

Schuwirth, B.S., Borovinskaya, M.A., Hau, C.W., Zhang, W., Vila-Sanjurjo, A., Holton, J.M., & Cate, J.H.D. (2005). Structures of the Bacterial Ribosome at 3.5 A Resolution. Science, 310, 827-834.

Schweins, T., Geyer, M., Scheffzek, K., Warshel, A., Kalbitzer, H.R., & Wittinghofer, A. (1995). Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. Nat. Struct. Biol., 2, 36-44.

Selmer, M., Dunham, C.M., Murphy, F.V., Weixlbaumer, A., Petry, S., Kelley, A.C., Weir, J.R., & Ramakrishnan, V. (2006). Structure of the 70S ribosome complexed with mRNA and tRNA. Science, 313, 1935-1942.

Semenkov, Y.P., Rodnina, M.V., & Wintermeyer, W. (1996). The “allosteric three-site model” of elongation cannot be confirmed in a well-defined ribosome system from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A., 93, 12183-12188.

Shine, J., & Dalgarno, L. (1974). The 3’-Terminal Sequence of Escherichia coli 16S Ribosomal RNA: Complementarity to Nonsense Triplets and Ribosome Binding Sites. Proc. Natl. Acad. Sci., 71, 1342-1346.

Shirokikh, N.E., & Preiss, T. (2018). Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions. Wiley Interdiscip. Rev. RNA, 9, e1473.

Shirokikh, N.E., Archer, S.K., Beilharz, T.H., Powell, D., & Preiss, T. (2017). Translation complex profile sequencing to study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and termination. Nat. Protoc., 12, 697-731.

Shoemaker, C.J., Eyler, D.E., & Green, R. (2010). Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science, 330, 369-372.

Shoji, S., Walker, S.E., & Fredrick, K. (2009). Ribosomal Translocation: One Step Closer to the Molecular Mechanism. ACS Chem. Biol., 4, 93-107.

Simonetti, A., Marzi, S., Myasnikov, A.G., Fabbretti, A., Yusupov, M., Gualerzi, C.O., & Klaholz, B.P. (2008). Structure of the 30S translation initiation complex. Nature, 455, 416-420.

Skabkin, M.A., Skabkina, O.V., Hellen, C.U.T., & Pestova, T.V. (2013). Reinitiation and other unconventional posttermination events during eukaryotic translation. Mol. Cell, 51, 249-264.

Spahn, C.M., Penczek, P.A., Leith, A., & Frank, J. (2000). A method for differentiating proteins from nucleic acids in intermediate-resolution density maps: cryo-electron microscopy defines the quaternary structure of the Escherichia coli 70S ribosome. Structure, 8, 937-948.

Spahn, C.M., Gomez-Lorenzo, M.G., Grassucci, R.A., Jørgensen, R., Andersen, G.R., Beckmann, R., Penczek, P.A., Ballesta, J.P., & Frank, J. (2004). Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J., 23, 1008-1019.

Spahn, C.M.T., Jan, E., Mulder, A., Grassucci, R.A., Sarnow, P., & Frank, J. (2004). Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell, 118, 465-475.

Spirin, A.S. (2009). The Ribosome as a Conveying Thermal Ratchet Machine. J. Biol. Chem., 284, 21103-21119.

Stapulionis, R., & Deutscher, M.P. (1995). A channeled tRNA cycle during mammalian protein synthesis. Proc. Natl. Acad. Sci. U. S. A., 92, 7158-7161.

Sulić, S., Panić, L., Barkić, M., Merćep, M., Uzelac, M., & Volarević, S. (2005). Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev., 19, 3070-3082.

Susorov, D., Zakharov, N., Shuvalova, E., Ivanov, A., Egorova, T., Shuvalov, A., Shatsky, I.N., & Alkalaeva, E. (2018). Eukaryotic translation elongation factor 2 (eEF2) catalyzes reverse translocation of the eukaryotic ribosome. J. Biol. Chem., 293, 5220-5229.

Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., & Ludtke, S.J. (2007). EMAN2: An extensible image processing suite for electron microscopy. J. Struct. Biol., 157, 38-46.

Tourigny, D.S., Fernandez, I.S., Kelley, A.C., & Ramakrishnan, V. (2013). Elongation factor G bound to the ribosome in an intermediate state of translocation. Science, 340, 1235490.

Triana, F., Nierhaus, K.H., & Chakraburtty, K. (1994). Transfer RNA binding to 80S ribosomes from yeast: evidence for three sites. Biochem Mol Biol Int., 33, 909-915.

Tsuboi, T., Kuroha, K., Kudo, K., Makino, S., Inoue, E., Kashima, I., & Inada, T. (2012). Dom34:Hbs1 Plays a General Role in Quality-Control Systems by Dissociation of a Stalled Ribosome at the 3′ End of Aberrant mRNA. Mol. Cell, 46, 518-529.

UniProt Consortium, T.U. (2008). The universal protein resource (UniProt). Nucleic Acids Res., 36, D190-D195.

Valle, M., Zavialov, A., Sengupta, J., Rawat, U., Ehrenberg, M., & Frank, J. (2003). Locking and unlocking of ribosomal motions. Cell, 114, 123-134.

Viero, G., Lunelli, L., Passerini, A., Bianchini, P., Gilbert, R.J., Bernabò, P., Tebaldi, T., Diaspro, A., Pederzolli, C., & Quattrone, A. (2015). Three distinct ribosome assemblies modulated by translation are the building blocks of polysomes. J. Cell Biol., 208, 581-596.

Volarevic, S. (2000). Proliferation, But Not Growth, Blocked by Conditional Deletion of 40S Ribosomal Protein S6. Science, 288, 2045-2047.

Voorhees, R.M., Schmeing, T.M., Kelley, A.C., & Ramakrishnan, V. (2010). The Mechanism for Activation of GTP Hydrolysis on the Ribosome. Science, 330, 835-838.

Voorhees, R.M., Fernández, I.S., Scheres, S.H.W., & Hegde, R.S. (2014). Structure of the Mammalian Ribosome-Sec61 Complex to 3.4 Å Resolution. Cell, 157, 1632-1643.

Wasserman, M.R., Alejo, J.L., Altman, R.B., & Blanchard, S.C. (2016). Multiperspective smFRET reveals rate-determining late intermediates of ribosomal translocation. Nat. Struct. Mol. Biol., 23, 333-341.

Wettenhall, R.E.H., & Morgan, F.J. (1984). Phosphorylation of hepatic ribosomal protein S6 and 80 and 40 S ribosomes. Primary structure of S6 in the region of the major phosphorylation sites for cAMP-dependent protein kinases. J. Biol. Chem., 259, 2084-2091.

Wettenhall, R.E.H., Erikson, E., & Maller, J.L. (1992). Ordered multisite phosphorylation of Xenopus ribosomal protein S6 by S6 kinase II. J. Biol. Chem., 267, 9021-9027.

Whitford, P.C., Ahmed, A., Yu, Y., Hennelly, S.P., Tama, F., Spahn, C.M.T., Onuchic, J.N., & Sanbonmatsu, K.Y. (2011). Excited states of ribosome translocation revealed through integrative molecular modeling. Proc. Natl. Acad. Sci. U. S. A., 108, 18943-18948.

Wilson, D.N., & Nierhaus, K.H. (2007). The Weird and Wonderful World of Bacterial Ribosome Regulation. Crit. Rev. Biochem. Mol. Biol., 42, 187-219.

Wittinghofer, A., & Vetter, I.R. (2011). Structure-Function Relationships of the G Domain, a Canonical Switch Motif. Annu. Rev. Biochem., 80, 943-971.

Wool, I.G. (1979). The Structure and Function of Eukaryotic Ribosomes. Annu. Rev. Biochem., 48, 719-754.

Xue, S., & Barna, M. (2012). Specialized ribosomes: a new frontier in gene regulation and organismal biology. Nat. Rev. Mol. Cell Biol., 13, 355-369.

Yamamoto, H., Unbehaun, A., & Spahn, C.M.T. (2017). Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms. Trends Biochem. Sci., 42, 655-668.

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: protein structure and function prediction. Nat. Methods, 12, 7-8.

Yusupova, G., & Yusupov, M. (2017). Crystal structure of eukaryotic ribosome and its complexes with inhibitors. Philos. Trans. R. Soc. B Biol. Sci., 372, 20160184.

Zernike, F. (1942). Phase contrast, a new method for the microscopic observation of transparent objects, Part I. Physica, 9, 974-986.

Zhang, K. (2016). Gctf: Real-time CTF determination and correction. J. Struct. Biol., 193, 1-12.

Zheng, S.Q., Palovcak, E., Armache, J.-P., Verba, K.A., Cheng, Y., & Agard, D.A. (2017). MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods, 14, 331-332.

Zhou, J., Lancaster, L., Donohue, J.P., & Noller, H.F. (2013). Crystal Structures of EF-G – Ribosome States of Translocation. Science, 340, 1235490.

Zhou, J., Lancaster, L., Donohue, J.P., & Noller, H.F. (2014). How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation. Science, 345, 1188-1191.

1. Summary/Zusammenfassung

1. Summary/Zusammenfassung

1. Summary/Zusammenfassung

1. Summary/Zusammenfassung